i^{3} CX Intelligent Control Station

- 640×480 colour touch display
- High resolution resistive touch screen
- Addressable function keys
- Real time clock
- Built-in Ethernet
- $3 \times$ communications ports (RS 232 / RS 485)
- $1 \times$ USB A, $1 \times$ USB mini B
- 10-30 VDC power supply
- 1MB RAM (program), 27MB (Graphical)
- Free configuration software
- IP65 (NEMA4)
- Remote I/O communication
- Optional: MicroSD (up to 32GB)

Modem (SMS, GSM, GPRS)
USB drive up to 2TB

(\in (IL) , (IL)

Options \& Ordering Codes

Standard Options	DI	D0	AI	A0
i3CX12Z/10D03-SEHF	12	6 Relay	4	-
i3CX12Z/13C14-SEHF	12	12	2^{*}	2
i3CX12C/20B05-SEHF	24	16	4	-
i3CX12Z/10B04-SEHF	12	12	2	-
i3CX12Z/10E24-SEHF	12	12	6^{*}	4
i3CX12Z/00000-SEHF	-	-	-	-

* Universal Analog Inputs

Technical Specifications

General Specifications	
Required Power (Steady State)	$420 \mathrm{~mA} @ 12 \mathrm{VDC} /$ $230 \mathrm{~mA} @ 24 \mathrm{VDC}$
Required Power (Inrush)	25 A for $<1 \mathrm{~ms}$ @ 24VDC DC Switched
Primary Power Range	$10-30 \mathrm{VDC}$
Relative Humidity	5 to 95% Non-Condensing
Clock Accuracy	$+/-20 \mathrm{ppm}$ Maximum at $25^{\circ} \mathrm{C}$ $(+/-1$ Minute per month)
Operating Air Temperature	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Weight	$1.98 \mathrm{~kg} / 4.375 \mathrm{Ibs} \mathrm{(without} \mathrm{I/O)}$
Approvals	UL, CE

Display Specifications	
Display Type	$5.7 "$ VGA TFT $(450$ nit typical)
Resolution	640×480
Colour	16-bit (65,536)
Screen Memory	27 MB
User-Programmable Screens	1023
Backlight	User configurable within the scan time. (perceived as instantaneous in many cases)
Screen Update Rate	

Control \& Logic Specifications	
Control Language Support	Advanced Ladder Logic
	Full IEC 61131-3
Logic Program Size	1 MB Maximum
\& Logic Scan Rate	$0.013 \mathrm{~ms} / \mathrm{k}$
Online Programming Changes	Supported in Advanced Ladder
	Digital Inputs - 2048
I/O Support	Digital Outputs - 2048
	Analog Inputs -512
	Analog Outputs -512
General Purpose Registers	50,000 (words) Retentive
	16,384 (bits) Retentive

Connectivity	
Serial Ports	1 RS-232 \& 1 RS-485 on first modular jack (MJ1/2) 1 RS-232 or 1 RS-485 on second Modular Jack (MJ3)
USB mini-B	USB 2.0 (480MHz) Programming \& Data Access
USB A	USB 2.0 (480MHz) for USB FLASH Drives (up to 2TB)
CAN	Remote I/0, Peer-to-Peer Comms, i3 Configurator
Ethernet	$10 / 100 \mathrm{MB}$ (Auto-MDX), Modbus TCP, HTTP, FTP, SMTP, i3 Configurator, Ethernet IP
Remote I/O	IOS, Smart IO, iSmart
Removable Memory	MicroSD (support for 32GB max) Application updates, Datalogging, more

Input / Output Specifications

Model	DC In	DC Out	Relays	HS In	HS Out	mA/V In	mA/V RTD/TC	mA/V Out	High Spe	nters
10D03	12		6	4		4			Number of Counters	2
10B04	12	12		4	2	2			Maximum Frequency	500kHz each
20B05	24	16		4	2	2			Accumulator Size	32-bits each
13C14	12	12		4	2		2	2	Modes Supported	
10E24	12	12		4	2		6*	4*	Totalizer	Quadrature
There are 4 high-speed inputs of the total DC inputs. There are 2 high-speed outputs of the total DC outputs. Model 10D03, 10B04, 20B05 feature 12-bit analog I/O. Model 13C14 features 14/16-bit analog I/O. High-speed outputs									Pulse Measurement	Frequency Measurement

(imited to $<65 \mathrm{kHz}$. Model 10E14 features a 14/17 bit analog I/O
*Up to six mA/V In, RTD/TC, and mA/V Out

2 Position Controlled Outputs
1 ON/OFF Setpoint per Output

Dimensions \& Panel Cutout

Ports \& Connectors

DC Input / Frame

Torque rating: 4.5-7 Lb-in ($0.50-0.78 \mathrm{Nm}$)
DC- is internally connected to I/O V-, but is isolated from CAN V-
A Class 2 power supply must be used

Primary Power Port Pins		
Pin	Signal	Signal Description
1	Ground	Frame Ground
2	DC-	Input Power Supply Ground
3	DC +	Input Power Supply Voltage

MJ1/2 Independent Serial Ports

MJ1: RS-232 w/Full Handshaking MJ2: RS-485 Half-Duplex

PIN	MJ1 PINS		MJ2 PINS	
	Signal	Direction	Signal	Direction
8	TXD	OUT	-	-
7	RXD	IN	-	-
6	0 V	Ground	0 V	Ground
5	$+5 \mathrm{~V} @ 60 \mathrm{~mA}$	OUT	$+5 \mathrm{~V} @ 60 \mathrm{~mA}$	OUT
4	RTS	OUT	-	-
3	CTS	IN	-	-
2	-	-	$\mathrm{RX}-/ \mathrm{TX}-$	IN / OUT
1	-	-	$\mathrm{RX}+/$ TX +	IN / OUT

DIP Switches

Switch	Name	Function	Default
1	MJ3 RS485 Termination	ON = Terminated	OFF
2	MJ3 Duplex	ON = Half	OFF
3		OFF = Full	
4	MJ3 RS485 Termination	ON = Terminated	OFF

Fixed Address	Digital/Analog I/O Function	i3CX Model				
		10003	10804	20805	$13 \mathrm{C14}$	10E14
\%11	Digital Inputs	1-12	1-12	1-24	1-12	1-12
	Reserved	13-32	13-31	25-31	13-31	13-31
	ESCP Alarm	n/a	32	32	32	32
\%Q1	Digital Outputs	1-6	1-12	1-16	1-12	1-12
	Reserved	7-24	13-24	17-24	13-24	13-24
\%Al1	Analog Inputs	1-4	1-2	1-2	1-2	1-4:33-38
	Reserved	5-12	3-12	3-12	3-12	n/a
\%AQ1	Reserved	n/a	1-8	1-8	1-8	1-12
	Analog Outputs	n/a	n/a	n/a	9-10	n/a

Default Address*	High Speed Counter Function	i3CX Models
\%11601	Status Bits	$1-8$
\&Q1601	Command Bits	$1-32$
\%AI0401	Accumulator $1 \& 2$	$1-8$
\%AQ0401	 Match Values	$1-12$
*Starting Address locations for		
\%l, \%Q, \%AI \& \%AQ may		
be re-mapped by user		

Default Address*	High Speed Output Function	i3CX Models
\%11617	Status Bits	1-8
\&Q**	Command Bits	1-32
n/a	n/a	n/a
\%AQ0421	PWM or Pulse Train Parameters	1-20
*Starting Address locations for $\% I \& \% A Q$ may be re-mapped by user		
**Q1-Q2 Speed Ou	are part of the Fixed ut mode they can Stepper/PTO M	Map. In High sed to initiate a

10D03 I/O Board Specifications

J1 (Orange)	Name
I1	IN1
I2	IN2
I3	IN3
14	IN4
I5	IN5
I6	IN6
I7	IN7
I8	IN8
H1	HSC1 / IN9
0 V	Common
A1	Analog IN1
A2	Analog IN2
A3	Analog IN3
A4	Analog IN4
OV	Common

J2 (Black)	Name
C6	Relay 6 COM
R6	Relay 6 N0
C5	Relay 5 COM
R5	Relay 5 N0
C4	Relay 4 COM
R4	Relay 4 N0
C3	Relay 3 COM
R3	Relay 3 N0
C2	Relay 2 COM
R2	Relay 2 N0
C1	Relay 1 COM
R1	Relay 1 N0
H4	HSC4 / IN12
H3	HSC3 / IN11
H2	HSC2 / IN10

Black

Relay Out / Digital In

\triangleleft

Relay Life Expectancy

WARNING: EXPOSURE TO SOME CHEMICALS MAY DEGRADE THE SEALING PROPERTIES OF MATERIALS USED IN THE Tyco relay PCJ

Cover / case \& base: Mitsubishi engineering Plastics Corp. $5010 \mathrm{GN} 6-30$ or $5010 \mathrm{GN6}$-30 M8 (PBT)
Sealing Material: Kishimoto 4616-50K (I part epoxy resin)
It is recommended to periodically inspect the relay for any degradation of properties and replace if degradation is found
$i^{3} \mathrm{CX}$ Intelligent Control Station

Safety

WARNING: Battery may explode if mistreated. Do not recharge, disassemble or dispose of in fire.

WARNING: EXPLOSION HAZARD - BATTERIES MUST ONLY BE CHANGED IN an area known TO BE NON-HAZARDOUS

This equipment is suitable for use in Class 1, Division 2, Groups A, B, C and D or Non-hazardous locations only.

FOR U.S. \& CANADA ONLY
Power input and output (l/O) wiring must be in accordance with Class 1, Division 2 wiring methods of the National Electric Code, NFPA70 for installations in the U.S. or as specified in Section 18-1J2 of the Canadian Electric Code for installations within Canada and in accordance with the authority having jurisdiction.

WARNING: EXPLOSION HAZARD - Do not disconect equipment unless power has been switched off or the area is known to be non-hazardous.

WARNING: EXPLOSION HAZARD - Substitution of components may impair suitability for Class 1, Division 2.

Digital outputs shall be supplied from the same source as the i3 Controller.

WARNING: Only qualified electrical personnel familiar with the construction and operation of this equipment and the hazards involved should install, adjust, operate, or service this equipment. Read and understand this manual and other applicable manuals in their entirety before proceeding. Failure to observe this precaution could result in severe bodily injury or loss of life.

WARNING: To avoid the risk of electric shock or burns, always connects the earth ground before making any other connections.

WARNING: To reduce the risk of fire, electrical shock, or physical injury it is strongly recommended to fuse all Power Sources connected to the i3 controller. Be sure to locate fuses as close to the source as possible.

WARNING: Replace fuse with the same type and rating to provide protection against risk of fire and shock hazards.

WARNING: In the event of repeated failure, do not replace the fuse again as a repeated failure indicates a defective condition that will not clear by replacing the fuse.

Jumpers on connector JP1 and others shall not be removed or replaced while the circuit is live unless the area is known to be free of ignitable concentrations of flammable gases or vapours.

Common Cause of Analog Input Tranzorb Failure

If a $4-20 \mathrm{~mA}$ circuit is initially wired with loop power, but without a load, the Analog Input could see 24 VDC . This is higher than the rating of the tranzorb. This can be solved by NOT connecting loop power prior to load connection, or by installing a low-cost PTC in series between the load and Analog Input.

